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propagation of only the microstrip mode. Table I gives diode and
circuit parameters.

III. PERFORMANCE OF THE VARACTOR-TUNED
OSCILLATOR

Fig. 3 shows the output power of a microstrip varactor-tuned os-
cillator measured as a function of the varactor voltage. With a bias
current of 100 mA an output power of 110 £ 15 mW CW is obtained
from 58.5 to 60.1 GHz by changing the varactor voltage from 0 to
25 V. Except for the first few volts, the tuning curve is nearly linear.
Wider tuning ranges can be achieved by changing the coupling be-
tween the two resonators. However, this reduces the output power
and gives larger power variations over the tuning range. A com-
promise between the tuning range and the output power is achjeved
by adjusting the coupling between the two resonators with a small
piece of ceramic (¢, =~ 80). This minimizes the varactor losses giving
a relatively narrow tuning range, but large enough for most radio
system applications. The output coupling which is less critical is
fixed; its magnitude is determined for maximum output power. The
corresponding oscillator @ is about 80.

The output power produced by the tunable oscillator is of the
same order as that obtained from a fixed frequency 60-GHz micro-
strip mMpaTT oscillator [27], [37] when biased at the same dc¢ current.
Thus the modulator circuit shows no significant loss compared to a
fixed frequency microstrip oscillator. FM noise is an important pa-
rameter in FSK radio system design. Noise measurements show that
the rms FM noise of the varactor-tuned oscillator is about the
same as that of the fixed-frequency oscillator [2], [3] about 400
Hz/(kHz)Y2. It is sufficiently small not to affect the radio system
[4] significantly.

The frequency modulation was measured for different baseband
signal shapes. For example, Fig. 4 shows the power spectrum of the
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Fig. 3. Output power and frequency of the varactor-tuned microstrip
oscillator as a function of the varactor voltage.

)

-

-

fon)

§ 10

S 2

s

E 3

e

2 40

[

; 50

o

& l F

59.5 GHz
50 MHz
Frequency in GHz
Fig. 4. Power spectrum of the output signal at 59.5 GHz with a sinusoi-

dal signal applied to the varactor to give an index of modulation of
2.4 at a rate of 50 MHz.
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Fig. 5. This figure shows a rectangular pulse-shaped baseband signal
applied to the varactor ‘for FSK modulation and the same signal after
detection by a FM receiver. The rise time of the input signal is 1.5 ns.

output signal when a 50-MHz sinusoidal signal is applied to the
varactor. The amplitude of the signal was adjusted to give an index
of modulation of about 2.4. Fig. 5 shows a rectangular-pulse-shaped
baseband signal which is applied to the varactor for FSK modula-
tion, and the same signal after detection by a FM receiver [3]. Com-
parison between these two signals shows that the rise time of the
rectangular pulses increased by less than 1 ns after being transmitted
by the oscillator. This result indicates that the oscillator can sustain
3 modulation rate of up to 200 Mbit/s.

IV. SUMMARY

A hybrid integrated microstrip varactor-tuned oscillator has been
built at 60 GHz giving about 100 mW over a 1.6-GHz frequency
range. The device can be used as an FM or FSK radio transmitter
sustaining modulation rates up to 200 Mbit/s. These results have
been obtained with a simple diode package made of two IMPATT
diodes, one used as a regular IMPATT oscillating diode, the other one
as a varactor for frequency tuning.
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Asymmetric Odd-Mode Fringing Capacitances

HENRY J. RIBLET

Abstract—An expression is given for the odd-mede fringing ca-
pacity of an infinite rectangular bar asymmetrically located inside an
infinite U-shaped outer conductor.
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Fig. 1. Coordinate planes of the conformal transformations.
INTRODUCTION = sn?u, if x and » are both replaced by 1/k? sn? «. Writing F (z) =
snz/cnz dnz, both integrals of (5) have the value 2F (o) 7 (u,a)
Cockroft [17 and Getsinger [2] have solved,- respectively, the when o is properly specified. In the first integral, to ensure that 0 <
problem of determining the odd- and even-mode fringing capacitances u < 1,leta = a + jK'. Withareal, » = sn2asothat 0 <a < K
for an infinite rectangular bar symmetrically located inside an ensures that 0 < x < 1. In the second integral, to ensure that

infinite U-shaped outer conductor by mapping the upper half-plane
into an L-shaped infinite polyéon by means of a Schwarz—Cristoffel
transformation. The essential k)roblem solved in this letter is the

evaluation of the integral ass
transformation which maps th

ciated with the Schwarz—Cristoffel
‘e upper half ¢ plane into the doubly

infinite U-shaped polygon in the z plane as shown in Fig. 1. This

|

transformation may be writtexﬁ
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0 <u<

where

LA —8) (1 — k) e (1)

1 <1/B < .

Points which correspond to each other are labeled similarly in Fig. 1.

The residue R of the integra;
R(w) = — /(v —

and this results in a jump at

nd at ¢t = u is given by
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A of —xR(u), while at ¢ = », the

residue of integrand R (») is given by
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Both of these integrals! can

v =8 [(1—%) 11— k%)]l/z}' (5

be reduced to Jacobi’s normal form

for elliptic integrals of the third kind by means of the substitution,

1 They both occur in the theory of symmetrical fringing capacitances,

1/ <» < o,leta = d.Fordreal,» = 1/k?sn?dsothat0 <d < K
ensures that 1/k? < » < ». Thus (5) can be evaluated as
2

z = 'u—_—p {F (@)X (u,a + jK') + F(d)I(u,d)} (6)

where it is to be kept in mind that 4 = sn?a¢ and » = 1/k2sn2d.
The transformation, ¢ = sn?w«, maps the rectangle in the u plane
(into the upper half of the ¢ plane) so that points marked with the
same letters correspond to each other. Thus it is a simple matter to
determine the coordinates of points B, C, and E in the z plane in

terms of the independent parameters a, d, and k, by giving u in (6)
successively the values K, K + jK’, and jK'.

THE DIMENSIONS

In the interest of brevity and in view of the direct formal nature
of the derivations, the results are presented without further discus-
sion. If Z(z) is the Jacobi zeta-function and we put

Z(z) = Z(z) +1/F(2)

Z(B) = %{F(a) [KZ(a) —j—g] +F(d>KZ<d)} 7

2 - T
Z(C) = :,{F(a) [(K + K E (@) +47 (% —1)],
K ;Td
+ F(d) [(K +iKYZ(d) + 7 2K]} (8)
-4 @y + 5 (% -
2(EB) = — V{F(a) [KZ(a) +2(K 1)]

xfd
+ F(d) [K’Z(d) +5 (E —1)]} )

then the geometrical dimensions, defined in Fig. 1, are given by

ko
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Bg =
oo+ e [rzw 4 2]
B = F(a) | K'Z(a) + + F@d)| K'Z(d) + —
y—u 2K
K .
8= — {F(a)Z(a) + F()Z(d)}
2
T =— {F(a) [K’Z(a) + - <— ——1)]
v —p

+ F(d) [K’Z(d) += (i —1)]}. (10)

THE ODD-MODE FRINGING CAPACITANCE

The odd-mode fringing capacitance of the structure is defined as
the limiting value of the difference between the total capacitance
of the structure, measured to the magnetic walls, A and D, and
the parallel-plate capacitance measured between 0A and ED, as
the magnetic walls tend to infinity. We thus require the total
capacitance of the structure in the z plane out to the magnetic
walls at A and D. As we have seen, this figure maps into the upper
half ¢ plane so that the magnetic walls at 4 and D transform into
semicircles centered about the points u and », respectively. It is
convenient to denote the radii of these circles by su and é» as they
approach zero. The capacitance of the structure in the ¢ plane in
which one conductor is the line segment between u -+ éu and » — o
and the other is the infinite line segment between » 4+ 8v and u — ou
is required, subject to the additional condition that the lines of
force are constrained so that the semicircular lines about the end-
points of these line segments are magneticwalls. Riblet [37] has shown
recently that the limiting value of this capacitance differs from that
of the same structure, in which the endpoints of the line segments are
joined by magnetic walls which fall on the real axis, by an amount
that is expressible in terms of an excess capacitance, C.. = log(2) /=.
The capacitance of the structure in the ¢ plane which falls entirely
on the real axis is given by K’ (ko) /K (ko), where

ke = (b—a) (d—c)/(d —b) (c —a)

and
a = u — du, b= pu+ oy, c=vp— by
and
d=v4 o
Thus
ko® = 4oudv/ (v — u)?
in the limit as éu and é» —> 0. Now
, )2
IZ{{EZ; z%log;—§=%log%. "(11)

This capacitance exceeds that of the actual structure by 2C.. since
there are two vanishing semicireles. If Co is the total capacitance
of the structure in Fig. 1, then

_ K (k)

2 log (2) 1 (v — u®)

Sudy 12

The determination of the parallel-plate capacitances, Cp, and
Cr,, associated with the plate gaps B; and B, respectively, proceeds
in a strainghtforward, purely formal manner from (6) and will
not be given here in the interest of brevity. If we call the odd-mode
fringing capacitance for the asymmetrical case Cyy”, it is given by
the limiting value of Cy — Cp, — Cp,. By substituting one finally
obtains
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2

Cr" =~ {az(a) +dZ(d) +log H'(0) — log (H (%a)H (2d))

+log [(1 — k?sn?asn®d)/2k]
— %log (snecnadnasndenddnd)

F(&) Fla)
+F( ) aZ(d) +F(d)

L(F@  Fa
+2 <F(a) +F(d)>1

dZ (a)
9(a + d)
B(a — d)} (13)

where H (z) and 6(x) are the familiar Jacobi theta-functions.
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Transmission-Line Transformation Between Arbitrary
Impedances

T. A. MILLIGAN

Abstract—An analytical method for transforming between two
complex impedances using a single transmission-line matching
section is described.

In arecent letter, Day [1] presents a graphical method to find an
impedance transformer using a single transmission-line section. This
can also be done analytically using the following formula to trans-
form:

Zy = B+ X
to

Zy = Ry + ; X.
The transforming line impedance is given by

g _ (Bl 2 — Rl 7\
B R: — Ry )

The transforming line length is given by

Zy (R — Ry)
B = tant [ =
an (Rz-Xl +R1'X2)

in degrees (or radians).

If B is negative, add 180 (Pi) to get proper length. If the trans-
formation is not possible, Z.2 will be negative.

The method can be easily applied on a hand calculator or com-
puter and proves to be much faster and more accurate than a
graphical technique.
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